TensoFlow****版本配套关系表

由于前一段时间做了一个关于深度学习的项目,在项目中发现Windows环境下不能安装Python2.7版本的tensorflow,然后索性就来了解一下tensorflow的各种版本的配套关系。

cuda、cudnn的安装方法请参考我的另外一篇博客

需要注意:

1.Windows环境下不能安装Python2.7版本的tensorflow;

2.tensorflow、Python、cuda、cudnn必须严格匹配,不然就会出现各种奇奇怪怪的问题;

3.关于这些工具的基本介绍,以及深度学习的入门介绍请下载我制作的ppt自行学习。

Linux

Version: CPU/GPU: Python Version: Compiler: Build Tools: cuDNN: CUDA:
tensorflow-1.6.0 CPU 2.7, 3.3-3.6 GCC 4.8 Bazel 0.9.0 N/A N/A
tensorflow_gpu-1.6.0 GPU 2.7, 3.3-3.6 GCC 4.8 Bazel 0.9.0 7 9
tensorflow-1.5.0 CPU 2.7, 3.3-3.6 GCC 4.8 Bazel 0.8.0 N/A N/A
tensorflow_gpu-1.5.0 GPU 2.7, 3.3-3.6 GCC 4.8 Bazel 0.8.0 7 9
tensorflow-1.4.0 CPU 2.7, 3.3-3.6 GCC 4.8 Bazel 0.5.4 N/A N/A
tensorflow_gpu-1.4.0 GPU 2.7, 3.3-3.6 GCC 4.8 Bazel 0.5.4 6 8
tensorflow-1.3.0 CPU 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.5 N/A N/A
tensorflow_gpu-1.3.0 GPU 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.5 6 8
tensorflow-1.2.0 CPU 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.5 N/A N/A
tensorflow_gpu-1.2.0 GPU 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.5 5.1 8
tensorflow-1.1.0 CPU 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.2 N/A N/A
tensorflow_gpu-1.1.0 GPU 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.2 5.1 8
tensorflow-1.0.0 CPU 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.2 N/A N/A
tensorflow_gpu-1.0.0 GPU 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.2 5.1 8

Mac

Version: CPU/GPU: Python Version: Compiler: Build Tools: cuDNN: CUDA:
tensorflow-1.6.0 CPU 2.7, 3.3-3.6 Clang from xcode Bazel 0.8.1 N/A N/A
tensorflow-1.5.0 CPU 2.7, 3.3-3.6 Clang from xcode Bazel 0.8.1 N/A N/A
tensorflow-1.4.0 CPU 2.7, 3.3-3.6 Clang from xcode Bazel 0.5.4 N/A N/A
tensorflow-1.3.0 CPU 2.7, 3.3-3.6 Clang from xcode Bazel 0.4.5 N/A N/A
tensorflow-1.2.0 CPU 2.7, 3.3-3.6 Clang from xcode Bazel 0.4.5 N/A N/A
tensorflow-1.1.0 CPU 2.7, 3.3-3.6 Clang from xcode Bazel 0.4.2 N/A N/A
tensorflow_gpu-1.1.0 GPU 2.7, 3.3-3.6 Clang from xcode Bazel 0.4.2 5.1 8
tensorflow-1.0.0 CPU 2.7, 3.3-3.6 Clang from xcode Bazel 0.4.2 N/A N/A
tensorflow_gpu-1.0.0 GPU 2.7, 3.3-3.6 Clang from xcode Bazel 0.4.2 5.1 8

Windows

Version: CPU/GPU: Python Version: Compiler: Build Tools: cuDNN: CUDA:
tensorflow-1.6.0 CPU 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 N/A N/A
tensorflow_gpu-1.6.0 GPU 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 7 9
tensorflow-1.5.0 CPU 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 N/A N/A
tensorflow_gpu-1.5.0 GPU 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 7 9
tensorflow-1.4.0 CPU 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 N/A N/A
tensorflow_gpu-1.4.0 GPU 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 6 8
tensorflow-1.3.0 CPU 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 N/A N/A
tensorflow_gpu-1.3.0 GPU 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 6 8
tensorflow-1.2.0 CPU 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 N/A N/A
tensorflow_gpu-1.2.0 GPU 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 5.1 8
tensorflow-1.1.0 CPU 3.5 MSVC 2015 update 3 Cmake v3.6.3 N/A N/A
tensorflow_gpu-1.1.0 GPU 3.5 MSVC 2015 update 3 Cmake v3.6.3 5.1 8
tensorflow-1.0.0 CPU 3.5 MSVC 2015 update 3 Cmake v3.6.3 N/A N/A
tensorflow_gpu-1.0.0 GPU 3.5 MSVC 2015 update 3 Cmake v3.6.3 5.1 8

参考资料:https://wenku.baidu.com/view/24695b2f814d2b160b4e767f5acfa1c7aa0082e3.html

转自:https://blog.csdn.net/wanzhen4330/article/details/81660277

Logo

欢迎来到FlagOS开发社区,这里是一个汇聚了AI开发者、数据科学家、机器学习爱好者以及业界专家的活力平台。我们致力于成为业内领先的Triton技术交流与应用分享的殿堂,为推动人工智能技术的普及与深化应用贡献力量。

更多推荐