caffe报错 error==cudaSuccess(8 vs. 0) invalid device function
显示此问题为显卡计算能力不匹配造成,在caffe目录下的Makefile.config文件当中做修改# For CUDA < 6.0, comment the lines after *_35 for compatibility.CUDA_ARCH := -gencode arch=compute_60,code=sm_60 \ -gencode arch=c
显示此问题为显卡计算能力不匹配造成,在caffe目录下的Makefile.config文件当中做修改
# For CUDA < 6.0, comment the lines after *_35 for compatibility.
CUDA_ARCH := -gencode arch=compute_60,code=sm_60 \
-gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_52,code=sm_52 \
-gencode arch=compute_61,code=sm_61
需要查询GPU的计算能力,对应GPU后面的计算能力是几,就在上面CUDA_ARCH后添加编号,例如我的是P100所以添加-gencode arch=compute_60,code=sm_60。NVIDIA各显卡计算能力如下:
1) CUDA-Enabled Tesla Products
Tesla Workstation Products
| GPU | Compute Capability |
|---|---|
| Tesla K80 | 3.7 |
| Tesla K40 | 3.5 |
| Tesla K20 | 3.5 |
| Tesla C2075 | 2.0 |
| Tesla C2050/C2070 | 2.0 |
//////////////////////////////////////////////////////////////////
Tesla Data Center Products
| GPU | Compute Capability |
|---|---|
| Tesla P100 | 6.0 |
| Tesla P40 | 6.1 |
| Tesla P4 | 6.1 |
| Tesla M40 | 5.2 |
| Tesla M40 | 5.2 |
| Tesla K80 | 3.7 |
| Tesla K40 | 3.5 |
| Tesla K20 | 3.5 |
| Tesla K10 | 3.0 |
************************************************************************************************************
2) CUDA-Enabled Quadro Products
Quadro Desktop Products
| GPU | Compute Capability |
|---|---|
| Quadro P6000 | 6.1 |
| Quadro P5000 | 6.1 |
| Quadro M6000 24GB | 5.2 |
| Quadro M6000 | 5.2 |
| Quadro K6000 | 3.5 |
| Quadro M5000 | 5.2 |
| Quadro K5200 | 3.5 |
| Quadro K5000 | 3.0 |
| Quadro M4000 | 5.2 |
| Quadro K4200 | 3.0 |
| Quadro K4000 | 3.0 |
| Quadro M2000 | 5.2 |
| Quadro K2200 | 5.0 |
| Quadro K2000 | 3.0 |
| Quadro K2000D | 3.0 |
| Quadro K1200 | 5.0 |
| Quadro K620 | 5.0 |
| Quadro K600 | 3.0 |
| Quadro K420 | 3.0 |
| Quadro 410 | 3.0 |
| Quadro Plex 7000 | 2.0 |
//////////////////////////////////////////////////////////////////
| GPU | Compute Capability |
|---|---|
| Quadro K6000M | 3.0 |
| Quadro M5500M | 5.0 |
| Quadro K5200M | 3.0 |
| Quadro K5100M | 3.0 |
| Quadro M5000M | 5.0 |
| Quadro K500M | 3.0 |
| Quadro K4200M | 3.0 |
| Quadro K4100M | 3.0 |
| Quadro M4000M | 5.0 |
| Quadro K3100M | 3.0 |
| Quadro M3000M | 5.0 |
| Quadro K2200M | 5.0 |
| Quadro K2100M | 3.0 |
| Quadro M2000M | 5.0 |
| Quadro K1100M | 3.0 |
| Quadro M1000M | 5.0 |
| Quadro K620M | 5.0 |
| Quadro K610M | 3.5 |
| Quadro M600M | 5.0 |
| Quadro K510M | 3.5 |
| Quadro M500M | 5.0 |
************************************************************************************************************
3) CUDA-Enabled NVS Products
Desktop Products
| GPU | Compute Capability |
|---|---|
| NVIDIA NVS 810 | 5.0 |
| NVIDIA NVS 510 | 3.0 |
| NVIDIA NVS 315 | 2.1 |
| NVIDIA NVS 310 | 2.1 |
//////////////////////////////////////////////////////////////////
| GPU | Compute Capability |
|---|---|
| NVS 5400M | 2.1 |
| NVS 5200M | 2.1 |
| NVS 4200M | 2.1 |
************************************************************************************************************
4) CUDA-Enabled GeForce Products
GeForce Desktop Products
************************************************************************************************************
5) CUDA-Enabled TEGRA /Jetson Products
GeForce Notebook Products
************************************************************************************************************
6) Tegra Mobile & Jetson Products
Tegra Mobile & Jetson Products
| GPU | Compute Capability |
|---|---|
| Jetson TX1 | 5.3 |
| Jetson TK1 | 3.2 |
| Tegra X1 | 5.3 |
| Tegra K1 | 3.2 |
欢迎来到FlagOS开发社区,这里是一个汇聚了AI开发者、数据科学家、机器学习爱好者以及业界专家的活力平台。我们致力于成为业内领先的Triton技术交流与应用分享的殿堂,为推动人工智能技术的普及与深化应用贡献力量。
更多推荐
所有评论(0)